Sleep Disturbances and GERD: Physiological and Behavioral Consequences

William C. Orr, PhD
Lynn Health Science Institute
Clinical Professor of Medicine
University of Oklahoma Health Sciences Center
Oklahoma City, Oklahoma
Prevalence of Nocturnal GERD Symptoms

Among Patients With Weekly Heartburn—AGA Survey¹

- 79%
- 57% report waking up during sleep
- 40% report impact on ability to work the next day

Among Patients With GERD Symptoms—Farup et al²

- 74%
- 54% wake up from sleep

Nighttime Reflux Increases Risks of GERD Complications

Esophageal Disease Progression

- Erosive esophagitis

- Complicated erosive esophagitis
 - Ulceration
 - Strictures
 - Barrett’s esophagus

- Adenocarcinoma

Atypical Manifestations

- Asthma
- Aspiration pneumonia
- Chronic cough

Other Symptoms

- Sleep deprivation

GI Symptom Score vs. Sleep Disturbance in a General Population

The symptom of nighttime heartburn is a reliable indication of sleep related GER
Figure 1. Number of Reflux Events After Sleep Onset by Group

Error bars represent +1 SE of the mean
* p<.01 vs. Daytime Heartburn and Normal Controls
** p<.05 vs. Normal Controls
GER and Insomnia

• Population survey of an entire county in Norway (population 92,808) assessed GERD symptoms and insomnia
 – 3153 cases with GERD symptoms (severe) and 40,210 with no GERD symptoms
 – Risk of reflux symptoms in insomnia was 3X greater than in those with no sleep complaints
 – The odds ratio showed a dose response with an increase with increasing frequency of complaint.

• This relationship may be a bidirectional relation with GERD sx contributing to insomnia and insomnia contributing to GERD sx.
Sleep related GER is not a new concept
Brief Historical Overview of Nighttime Reflux

1970: Atkinson and Van Gelder measured esophageal acidity during the 12-hour nocturnal period and “showed a significant correlation between the duration of nocturnal periods of high esophageal acidity and the severity of esophagitis.”

1978: Johnson evaluated whether reflux in the recumbent position resulted in prolonged exposure to acid and concluded that: “Recumbent acid exposure during sleep appears to be the most important exposure to control ...”

1981: First PSG study: “These data also emphasize the importance of actually identifying the patients who reflux during sleep since such patients would be considered more likely to develop severe esophagitis.”
Is Nighttime Reflux a Distinct Clinical Entity?

• Yes! But why???
• Sleep related GER shows distinct prolongation of acid clearance
• Patients with nighttime heartburn have a greater risk of developing esophagitis
• Patients with nighttime heartburn have a greater incidence of extra-esophageal symptoms (chest pain, cough etc.)
• Quality of life is significantly worse
• Symptoms can be resolved with aggressive PPI Rx
How is sleep different than waking?
Normal Defense Mechanisms Against Acid Load

- Heartburn (Warning)
- Acid Mucosal Contact
- Salivary Flow
- Swallowing (1° Peristalsis)
- Local Response (2° Peristalsis)
Acid-Mucosal Response

Sleep

- No Heartburn
- ↓ 1° Peristalsis
- ↓ Salivary Flow

Risk of Complications
How does sleep affect the pattern of GER?
Normal Postprandial Reflux
(in Normal Volunteer)
Sleep Reflux
Supine Sleep Condition
H⁺ Ion Movement and Duration of Acid Exposure

ACID CONTACT TIME AND DISEASE SEVERITY
(Frazzoni, et. al, Ail. Pharmacol. Ther 2003, 18:1091-1098)

% ACT

* P < 0.01 Complicated vs NERD
+ P < 0.05 Erosive vs Complicated & NERD
Percent Acid Exposure
24-hr pH Monitoring
(Orr et. al. Amer. J. Gastro. 1994: 89; 509-512)
Sleep Disturbance and GERD
The Relationship Between Intensity Rating Score and Sleep Deprivation During an Acid Perfusion Test

Schey R et al., Gastroenterology 2007; 133:1787-1795
Sleep/GERD Interaction

Respiratory Complications of Sleep Related GER
Respiratory Sx and Nighttime GER

(Gislason T. et.al. Chest 2002; 121: 158-163)

• Population study of 2202 randomly selected subjects (structured interview and sleep questionnaire)

• Results:
 – 4.6% had nighttime heartburn
 – Compared to those without nighttime heartburn this group had significantly more sleep complaints
 – Nighttime heartburn subjects were more likely to report wheezing (OR=2.5) and nighttime SOB (OR 2.9)
 – Physician diagnosed asthma was 9% in those with nighttime heartburn compared to 4% in those without nighttime heartburn (P<.05)
Diagnosis And Treatment Of Atypical GERD

Pathophysiology Of GERD And Asthma

Reflux

Reflex

Proximal Migration

% Infusions

0 50 100

Wake
Sleep

Volume

1 mL
3 mL

Laryngitis and GER

- Reflux common (75%) in patients with posterior laryngitis, with longer mean acid clearance time\(^1\)
- Data concerning treatment are conflicting; results depend on patient population, dose of PPI, and treatment duration.
- Nocturnal proximal esophageal acidification found in >50% GERD patients (n=25) with persistent laryngeal symptoms; none in reflux controls (n=15) without laryngeal symptoms\(^2\)
- In dysphonia patients (n=20) and proven laryngitis treated with PPI tid:
 - response at 6 and 12 wk: 47% and 63%
- Symptoms and signs resolved in 50–80% chronic laryngitis patients after 8 weeks PPI therapy in another trial\(^4\)

\(^1\)ULRICH, OTOLARYNGOL HEAD NECK SURG 1999; 120: 672
\(^2\)JACOB, GASTROENTEROLOGY 1991; 100: 305
\(^3\)WILLIAMS, ANN J GASTROENTEROL 2004; 39: 777
\(^4\)KLOPSTICK, MED SCI MONIT 2004; 10: 118
GER and OSA: Is There An Association?
OSA and GERD Clinical Observations

- OSA and GERD share risk factors—primarily obesity
- Increased negative pressure with airway obstruction predisposes to GER
- OSA patients seem to have an increased prevalence of the clinical complaint of heartburn
Relationship Between OSA and GER

- Two groups evaluated
 - >15 OSA per hr.
 - <5 OSA per hr.
- OSA patients had significantly greater acid contact
- 18% of reflux events were associated with an obstructive airway event
GER and OSA

• Tardif et al: Neurophysio Clin 1988;18:323-332:
 – Could not prove a temporal association between GER and apnea in 8 obese patients.

• Graf et al: Z Gastroenterol 1995;33:689-693
 – By visual analysis there was no obvious correlation between reflux periods and apnea periods.
OSA and GERD Clinical Data
(Shepherd et. al. J. Sleep Res. 2010; 1365-2869)

• Sleep related complaints of heartburn have been noted in over 60% of patients

• Assessed the prevalence of GERD related complaints in untreated OSA patients, OSA patients on CPAP and controls (population survey)
PREVALENCE OF NIGHTTIME GERD SYMPTOMS (OSA POPULATION)

- any nighttime Sx
- frequent nighttime Sx

* p<0.05 vs mild OSA
Responses to Treatment
CPAP Rx in Patients With OSA and GERD
(Green et. al. Arch Int Med 2003; 163: 41-45)

• Studied 331 patients having Dx of OSA

• At baseline patients graded the frequency of nighttime GER Sx from 1 (never) to 5 (always)

• All were treated with CPAP

• 62% noted nighttime GER Sx

• Patients compliant with CPAP had 48% improvement in GER Sx score

• Higher CPAP pressures were correlated with greater reduction in GER Sx score
Does upper airway acid exposure predispose to OSA?
Study by Orr et. al.
(J. Clin. Sleep Med. 2009: 5; 330-33)

• Documented GER and mild OSA (AHI <15)
• All had laryngoscopy before and after Rx
• 8 wks of Rx with standard dose of PPI
• Marked reduction in sleep related GER
• No significant change in AHI
• Modest changes in upper airway anatomy
Table 3—24-Hour pH Monitoring Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pretreatment (n = 25)</th>
<th>Posttreatment (n = 25)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total acid contact time, %</td>
<td>8.2 ± 3.1</td>
<td>1.9 ± 5.4</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Waking</td>
<td>8.7 ± 3.2*</td>
<td>1.8 ± 5.2*</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Sleep</td>
<td>8.0 ± 7.0</td>
<td>1.7 ± 5.8</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Total number of events</td>
<td>172.3 ± 72.2</td>
<td>21.1 ± 33.8</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Waking</td>
<td>136.0 ± 63.8</td>
<td>17.6 ± 27.8</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Sleep</td>
<td>35.4 ± 27.8</td>
<td>3.4 ± 8.1</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Total long-duration (> 5 min) events</td>
<td>5.5 ± 9.1</td>
<td>0.8 ± 1.8</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Waking</td>
<td>1.9 ± 2.5</td>
<td>0.4 ± 1.0</td>
<td>< 0.01</td>
</tr>
<tr>
<td>Sleep</td>
<td>4.3 ± 9.4</td>
<td>0.6 ± 1.6</td>
<td>< 0.057</td>
</tr>
</tbody>
</table>
Table 4—Anatomic Changes

<table>
<thead>
<tr>
<th>Condition</th>
<th>Pretreatment (n = 15)</th>
<th>Posttreatment (n = 15)</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posterior commissure hypertrophy</td>
<td>1.3 ± .9</td>
<td>0.7 ± 0.5</td>
<td>0.04*</td>
</tr>
<tr>
<td>Ventricular obliteration false cord obliteration</td>
<td>0.3 ± 0.7</td>
<td>0 ± 0</td>
<td>NS</td>
</tr>
<tr>
<td>Vocal fold edema</td>
<td>1.0 ± .9</td>
<td>0.5 ± 0.6</td>
<td>NS</td>
</tr>
<tr>
<td>Erythema</td>
<td>0.8 ± 1.0</td>
<td>0.7 ± 0.9</td>
<td>NS</td>
</tr>
<tr>
<td>Laryngeal edema</td>
<td>0.1 ± 0.5</td>
<td>0.0 ± 0.0</td>
<td>NS</td>
</tr>
<tr>
<td>Subglottic edema</td>
<td>0.1 ± 0.5</td>
<td>0 ± 0</td>
<td>NS</td>
</tr>
<tr>
<td>Reflux Finding Score</td>
<td>3.6 ± 3.2</td>
<td>1.9 ± 1.4</td>
<td>0.07*</td>
</tr>
</tbody>
</table>

Data are shown as Mean ± SD. *p < 0.05
Improvement in Sleep Quality
(Johnson et. al. Amer. J. Gastro 2005: 100; 1914-1922)

- Eso 40mg (n=204)
- Eso 20mg (n=214)
- Placebo (n=214)

PSQI Baseline: 9.5 9.6 9.6
PSQI Week 4: 6 5.8 7.5

* p<0.0001 vs. placebo
Sleep Quality in PPI Rx

(Fass et. al. Amer. J. Gastro. 2011; 106: 421-431)
Conclusions

• Nighttime heartburn and associated sleep disorders are common among patients with GERD

• Physiological changes associated with sleep produce significant alterations in responses to acid mucosal contact

• Sleep related GER is a major factor in the pathogenesis of esophagitis and other extra-esophageal complications of GERD

• Clinicians should inquire about the presence of nighttime heartburn as well as its frequency and severity as an indication of more severe and complicated GERD
“The sleeping patient is still a patient, his disease goes on not only while he sleeps, but indeed may progress in an entirely differently fashion from it’s progression in the waking state.” Eugene Robin, 1958